Electrogenic H(+)-regulated sulfate-chloride exchange in lobster hepatopancreatic brush-border membrane vesicles.
نویسندگان
چکیده
Transport of [35S]sulfate by brush-border membrane vesicles (BBMV) of lobster (Homarus americanus) hepatopancreas was stimulated by an outwardly directed chloride gradient. In contrast, sulfate uptake was not enhanced by inwardly directed Na+ or K+ transmembrane gradients. An inside-positive membrane potential (valinomycin and K+) stimulated SO4(2-)-Cl- exchange, whereas an inside-negative membrane potential was inhibitory. Sulfate-sulfate exchange was not affected by alterations of transmembrane potential. An inwardly directed proton gradient, or the presence of low bilateral pH, enhanced SO4(2-)-Cl- exchange, but the H+ gradient alone did not stimulate sulfate uptake in chloride-equilibrated BBMV or in vesicles lacking internal Cl-. The stilbenes 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited SO4(2-)-Cl- exchange. Sulfate influx occurred by a combination of carrier-mediated transfer, exhibiting Michaelis-Menten kinetics, and nonsaturable "apparent diffusion." 36Cl- influx into sulfate-loaded BBMV was stimulated by an inside-negative transmembrane potential compared with short-circuited vesicles. These results suggest that sulfate-chloride exchange in hepatopancreatic BBMV occurred by an electrogenic carrier mechanism exhibiting a 1:1 flux ratio that was modulated by internal and external H(+)-sensitive regulatory sites. The role of this antiport process in anion secretion is discussed.
منابع مشابه
IMMUNOLOCALIZATION OF AN ANTIGEN ASSOCIATED WITH THE INVERTEBRATE ELECTROGENIC 2Na+/1H+ ANTIPORTER
Epithelial plasma membranes from crustacean gut, kidney and gills have been shown recently to display an electrogenic 2Na+/1H+ antiporter that differs considerably in its physiological properties from the vertebrate electroneutral 1Na+/1H+ exchange paradigm. In this study, we describe the histological and cytological localization of an antigen associated with invertebrate electrogenic 2Na+/1H+ ...
متن کاملElectrogenic proton-regulated oxalate/chloride exchange by lobster hepatopancreatic brush-border membrane vesicles.
The transport of [14C]oxalate (Ox2-) by epithelial brush-border membrane vesicles (BBMV) of lobster (Homarus americanus) hepatopancreas, formed by a magnesium precipitation technique, was stimulated by an outward Cl- gradient (in > out). By contrast, Ox2- uptake was not enhanced by an inward Na+ or K+ transmembrane gradient. Generation of an inside-positive membrane potential by K+ in the prese...
متن کاملElectroneutral Na+/H+exchange in brush-border membrane vesicles from Penaeus japonicus hepatopancreas.
An electroneutral Na+/H+exchange mechanism (dimethylamiloride inhibitable, Li+ sensitive, and Ca2+ insensitive) was identified in brush-border membrane vesicles (BBMV) from Kuruma prawn hepatopancreas by monitoring Na+-dependent H+ fluxes with the pH-sensitive dye acridine orange and measuring22Na+uptake. Kinetic parameters measured under short-circuited conditions were the Na+ concentration th...
متن کاملELECTRONEUTRAL Na-2 Cl -LEUCINE COTRANSPORT BY LOBSTER HEPATOPANCREATIC BRUSH-BORDER MEMBRANE VESICLES
Uptake of L-[H]leucine by lobster hepatopancreatic brush-border membrane vesicles was stimulated by a transmembrane NaCl gradient (o>i ) , but not by identical gradients of NaSCN or other Cl~ salts (e.g. K, Li, NH4 , Cs or choline), suggesting that amino acid transfer depended upon both Na and Cl~. In NaCl medium at acidic pH, leucine uptake was largely electroneutral and unresponsive to a tran...
متن کاملCa2+ transport processes of lobster hepatopancreatic brush-border membrane vesicles
45Ca2+ uptake by hepatopancreatic brush-border membrane vesicles of Atlantic lobster (Homarus americanus) occurred by a combination of three independent processes: (1) an amiloride-sensitive carrier-mediated transport system; (2) an amiloride-insensitive carrier-mediated transport system; and (3) a verapamil-inhibited channel process responsive to transmembrane potential. Both carrier-mediated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 262 2 Pt 2 شماره
صفحات -
تاریخ انتشار 1992